Sevana AQuA: Promising Audio Quality Assessment for AMR-WB, EVS-WB, and EVS-SWB Codecs

Introduction

In the ever-evolving landscape of telecommunication technologies, efficient audio compression codecs play a pivotal role in delivering high-quality voice communication over limited bandwidth. The quality of audio codecs is traditionally assessed through Mean Opinion Score (MOS) testing, which involves subjective human evaluations. However, the need for automated, reliable, and consistent methods for evaluating codec quality led to the development of Sevana AQuA (Audio Quality Assessment) – a groundbreaking solution capable of differentiating quality based on MOS scores among various codecs, including Adaptive Multi-Rate Wideband (AMR-WB), Enhanced Voice Services Wideband (EVS-WB), and Enhanced Voice Services Super-Wideband (EVS-SWB).

The Significance of Codec Quality Assessment

As telecommunication providers strive to deliver crystal-clear voice quality over diverse networks, codec development has become a critical aspect of ensuring optimal user experience. The efficient utilization of bandwidth, reduction of latency, and preservation of voice naturalness are among the key parameters codec developers aim to enhance. Traditional subjective testing involves a panel of human listeners providing subjective quality scores, often measured by MOS. However, this process can be time-consuming, expensive, and potentially inconsistent due to variations in human perception.

Enter Sevana AQuA

Sevana AQuA represents a paradigm shift in codec quality assessment by leveraging advanced algorithms to automatically evaluate audio quality. The software analyzes audio samples encoded using different codecs, such as AMR-WB, EVS-WB, and EVS-SWB, and assigns them MOS scores based on a robust computational model. This model emulates human auditory perception, enabling AQuA to provide objective and repeatable quality assessments.

Key Features and Functionalities

  1. Objective Quality Scoring: Sevana AQuA employs advanced signal processing techniques and perceptual models to generate objective quality scores for each codec. These scores are highly correlated with human-perceived quality, making them an accurate representation of user experience.
  2. Codecs Comparison: The software enables direct comparisons of codec performance. Telecommunication companies and developers can assess how different codecs perform under varying network conditions, aiding them in selecting the most suitable codec for their requirements.
  3. Scalability and Efficiency: Sevana AQuA’s automated assessment eliminates the need for extensive human listener panels, reducing time and costs associated with quality testing.
  4. Wide Applicability: The software is versatile, accommodating different codecs and network conditions. It can be integrated into the codec development pipeline or used to assess codec performance in real-world scenarios.
  5. Continuous Improvement: Sevana AQuA can be fine-tuned and updated as new codecs are introduced or existing ones are optimized. This ensures that the evaluation remains up-to-date with technological advancements.

Conclusion

Sevana AQuA represents a pivotal advancement in the field of audio codec quality assessment. By offering automated, objective, and reliable MOS scoring for codecs such as AMR-WB, EVS-WB, and EVS-SWB, the software empowers telecommunication companies, developers, and researchers to make informed decisions about codec selection and optimization. As the demand for high-quality voice communication continues to grow, Sevana AQuA plays a crucial role in enhancing user experience across various networks and devices.

How to make mobile test call from one mobile phone to another?
Using Sevana QualTest it is easy:

✅Measures quality of mobile calls with regular non-rooted Android phones and iPhones
✅Enables uploads and shares test results
✅Runs both active (with reference audio) and passive tests
✅May be integrated with QualTest Host and correspondent Backend to automate making and receiving mobile test calls
✅Measures quality of mobile calls in the field
Within QualTest one can easily setup these two test scenarios:
🔊 initiate test calls and measure MOS when installed as system application. It is available on rooted phones only. One can view / share / upload test results right from the phone.
🔊 initiate and accept calls without analysis on mobile phone. Rooted phone is NOT required. In this mode application notifies its desktop (Raspberry Pi) counterpart (Qualtest Host, further down QH) about progress of the call. QH handles audio streams via cable adapter and communicates with backend.

 

What are Sevana call quality testing offerings?
We are happy to offer all kinds of tools to test call quality in any network: VoIP, GSM, 5G, satellite
🔹 Vast call quality monitoring both on audio and protocol levels
🔹 Passive real-time and active scheduled call quality analysis
🔹 Call quality problem root cause analysis
🔹 Reliable network and payload MOS
🔹 Mobile-to-mobile call quality tests

How well do you know your network?
Do you know that in a packet switched network you may not only rely on ITU-T G.107 E-Model MOS and R-Factor? There are lots of other issues that affect QoE of your subscribers besides typical metrics such as jitter, latency, packet loss, or RTT delay.
Learning about issues “inside” the call gives you a unique chance to detect the issues not necessarily connected with network KPIs.
Ask us how knowing about Silence, Audio gaps, Clipping, Echo and Noise will help you to increase callers satisfaction and prevent their complains.

 

Sevana QualTest is a mobile testprobe GSM VoIP application that checks current network conditions and estimates voice quality in mobile and VoIP networks. The platform is designed for end-to-end and single-end call testing, as well as for gathering and analyzing call audio quality metrics. Measure network metrics for VoIP calls and use waveform analysis to correlate audio problems with network conditions.

QualTest mobile test probe is an application for Android-powered devices that can work in both VoIP and cellular networks. A powerful tool for end-to-end and single-ended call testing. Fully functional frontend allows easy set up of tests specifying calling and called parties, reference audio and devices. Reporting shows overall quality MOS scores throughout different time periods, successful and failed test calls and speech-to-text engine provides information on call audio contents. The system works perfectly with unrooted and rooted mobile phones and analysis can be performed as on mobile device itself as well as on the devices it is connected to (e.g. Raspberry Pi in case of regular unrooted phones).